Teacher notes
 Topic A

An instructive problem on circular motion and work done.

A ball of mass m hangs at the end of a vertical string of length / in position A. A force is applied to the ball so that the ball moves along a circular arc eventually reaching position B , where the string is again vertical. The force is always tangent to the vertical circular path.

The ball starts from rest at $t=0$. The force is given by $F=m g(c+\cos \theta)$ where c is a constant. The angle is measured relative to a horizontal line, so it varies from $-\frac{\pi}{2}$ at A to $\frac{\pi}{2}$ at B.
(a) Determine the tension in the string at $t=0$.
(b) Calculate the initial acceleration of the ball.
(c) Show that the tangential acceleration of the ball is constant.

IB Physics: K.A. Tsokos

(d) The string goes slack in position B. Show that $c=\frac{1}{2 \pi}$.
(e) Determine the work done by force F from position A to position B.

AHL
(f) Determine
(i) the net torque on the ball.
(ii) the change in the angular momentum of the ball from A to B .
(iii) the time taken to move from A to B.

Answers

(a) $T-m g=m \frac{v^{2}}{l}$ but $v=0$, so $T=m g$.
(b) At $t=0, F=m g\left(c+\cos -\frac{\pi}{2}\right)=m g c$. Hence the acceleration is $g c$, directed to the right.
(c) $F-m g \cos \theta=m a_{\mathrm{T}}$. Hence $a_{\mathrm{T}}=\frac{F}{m}-g \cos \theta=g(c+\cos \theta)-g \cos \theta=g c$ and so constant.
(d) At the top, $T+m g=m \frac{v^{2}}{l}, T \rightarrow 0$ and so $v^{2}=g l$. But also $v^{2}=2 a_{\mathrm{T}} / \pi=2 g c l \pi$ since $a_{\mathrm{T}}=g c$ and the distance travelled from A to B is $l \pi$. Hence, $2 g c l \pi=g l \Rightarrow c=\frac{1}{2 \pi}$.
(e) From A to B: $W_{\text {net }}=\Delta E_{\mathrm{K}}=\frac{1}{2} m v^{2}-0=\frac{1}{2} m g L . W_{\text {net }}=W_{F}+W_{m g}+W_{T}=W_{F}-m g(2 I)+0$.

Hence, $W_{F}-m g(2 I)=\frac{1}{2} m g l$ and so $W_{F}=\frac{5}{2} m g l$.
(As a check: $W_{F}=\int_{-\pi / 2}^{\pi / 2} F d s=m g \int_{-\pi / 2}^{\pi / 2}\left(\frac{1}{2 \pi}+\cos \theta\right) / d \theta=\left.m g l\left(\frac{1}{2 \pi}+\sin \theta\right)\right|_{-\pi / 2} ^{\pi / 2}=m g l\left(\frac{1}{2}+2\right)=\frac{5 m g l}{2}$. .)
(f)
(i) Net torque is: $\tau=F L-m g / \cos \theta=m g l(c+\cos \theta)-m g l \cos \theta=m g / c=\frac{m g l}{2 \pi}$.
(ii) Change in angular momentum is $\Delta L=m v l-0=m l \sqrt{g l}$.
(iii) From $\tau=\frac{\Delta L}{\Delta t} \Rightarrow \Delta t=\frac{\Delta L}{\tau}=\frac{m l \sqrt{g l}}{m g l c}=\frac{1}{c} \sqrt{\frac{l}{g}}=2 \pi \sqrt{\frac{l}{g}}$.
(This agrees with: $\Delta s=\frac{u+v}{2} \Delta t \Rightarrow \Delta t=\frac{2 \Delta s}{0+v}=\frac{2 \pi l}{\sqrt{g l}}=2 \pi \sqrt{\frac{l}{g}}$.)

